Power Technology Roadmap Trends 2014 – 2019

Presenter
Dhaval Dalal

PSMA Power Technology Roadmap Committee Co-Chairs:
Aung Thet Tu
Eric Persson
Outline

• **Power Technology Roadmap**
 - What/Why (Purpose)
 - When/How (Methodology)
 - Retrospective Analysis

• **2015 Results**
 - Structure
 - Product Technology Trends
 - Components Trends
 - Application Trends and Emerging Technologies
• **Power Sources Manufacturers Association**
 ► Multi-national non-profit organization with 160+ members
 ► One of the sponsors of APEC providing industry voice

• **1st Workshop Generated Roadmap in 1994**
 ► Workshop was led by Bob Freund, AT&T Bell Laboratories

• Subsequent Roadmap efforts have evolved by learning from doing and by improved participation

• **Purpose of Technology Roadmap is** Communication

Capture Trends Driving New Technology in Power Conversion
PTR Methodology

• Gather Data (Presentations & Survey)
 ▶ Users
 ▶ Component Suppliers
 ▶ Market Research
 ▶ Technology
 ▶ Survey

 Weightage shift in presentation topics is a good leading indicator of Technology Evolution

• Analyze Data
 ▶ Breakout groups
 ▶ Compile trends into tables

 Y-o-Y consistency helps pick out subtle shifts or throw away outliers; New participants inject new perspectives

• Summarize
 ▶ Presentation Summaries
 ▶ Product Trend Tables Summaries
 ▶ Application Summaries

 Articulation of the results is very important – final result counts!!
Report Tables

General Requirements

Design and Components

Packaging, Thermal Management
Report Structure
Can best be summarized by
PTR: A Retrospective Review

- Data from past 5 roadmaps were analyzed
 - For internal learning and course correction
 - For “gloating” when predictions were right

- Analysis scope limited to quantitative data
 - Easy to track and visualize/report

- Data from 2015 report also included in the analyses

- Generalized learnings
 - Frequencies rarely match projected values
 - Efficiencies have outpaced projections in recent years
 - Usage of digital control lagged projections till very recently

- Many more learnings are available from a qualitative review – exercise to the reader
Ac-Dc Front End Efficiency

Efficiency @ 48 V Output

- Actual is above or at projected in both
- Gap between high-end and low-end smaller in 48V
- Consistency in projected numbers (2010/15)
- 12 V high-end projections catching up to 48 V

Efficiency @ 12 V Output
Ac-Dc Front End Control

- Significant jump to digital 2008-10
- Gradual growth after that

2008-Actual

- Analog: 80%
- Digital: 15%
- Mixed Analog/Digital: 5%

2010-Projected in 2006

- Analog: 40%
- Digital: 40%
- Mixed Analog/Digital: 20%

2010-Actual

- Analog: 40%
- Digital: 40%
- Mixed Analog/Digital: 20%

2017

- Analog: 55%
- Digital: 35%
- Mixed Analog/Digital: 10%
Ac-Dc External

- High-end efficiency - significant jump from 2010-15
- No load power had great decline from 06 to 08. Trend continues…
- Digital/Mixed control adaption at faster rate than predicted in 2011

Peak Efficiency < 30 W Models

No Load Power
Dc-Dc Isolated

- Greater split in o/p voltages (not predicted)
- Frequency – transition to > 500 kHz (slow)
- Faster transition to digital control
Non-Isolated Dc-Dc

- Projected efficiency not monotonic
- Frequency – 2010 higher than projected; after that more aligned
- Control – Digital takeover too optimistic, aligned from 2012 onwards
2015 Results
Report Content

Application Trends
- Automotive
- Computing
- Consumer
- Industrial
- Lighting
- Medical
- Military/Aerospace
- Motor Control
- Portable Charging
- Renewables

Emerging Technologies
- Power SoC
- Server Power
- 3D Power Packaging
- Additive Manufacturing
- Magnetics
- High Power Wireless Transfer
- Smart Grid
- Energy Storage
- Smart Building

2017 - 2019 Trend Tables
- Ac-Dc front-end
- Ac-Dc external
- Isolated Dc-Dc
- Non-Isolated Dc-Dc power supply in a package (PSiP)
Report Content: Webinars

- **Power Architectures (4)**
 - Datacenter HVDC (Stephen Oliver, Vicor)
 - Automotive Motor Drives (Babak Fahimi, UT Dallas)
 - 400 VDC Distribution (Brian Davies – Andean Power Products, David Greary - StarLine DC Solutions, BJ Sonnenberg - Emerson)
 - Topology Trends (Steve Mappus, Fairchild)

- **Technology and Market Forces (5)**
 - Technology Convergence (Alix Paultre, PSD)
 - 3-D Packaging (Brian Narveson, PSMA)
 - Mission-Critical Power (Dusty Becker, Emerson)
 - Trends in CSC Automotive App’s (Pierric Gueguen, Yole)
 - Digital Power (Dave Freeman, TI)

- **Components (4)**
 - GaN New Life… (Alex Lidow, EPC)
 - SiC BJT (Ranbir Singh, GeneSiC)
 - GaN Power Supply Trends (Eric Persson, IR)
 - HV SiC FETs (Jeffrey Casady, Cree)
2015 Survey Demographics

- About 50-50 split between power supply designers and component providers
- 1-45 years experience in the industry
- 60% in design function (25% marketing)
• Impact of the shift towards DC Distribution Architecture
 ► Very slow adoption rate till now

• PFC Stage
 ► Limited magnetic material choices and EMI concerns are drivers for low fsw (generally < 150 kHz)
 ► Slower adoption of WBG devices due to low switching frequencies
 ► Increasing digital control proliferation

• Additional data captured in trend tables:
 ► Power Management interface, communication protocol, physical layer, communication bus speed,..
 ► Input voltage range, topology, frequency, control implementation, switch/rectifier technology, hold-up time…
Report Highlights
Ac-Dc Front-End Power Supplies

- Incremental increase in efficiencies – plateau effect

- Some applications prefer coverage to 277/480 Vac

- Dc-Dc Conversion
 - A trend towards alternate half-bridge topologies
 - Higher frequencies benefit from WBG devices
 - Increasing digital/mixed control usage

- Additional data captured in trend tables:
 - Topology, frequency, control implementation, switch technology, transformer technology, inductor technology, rectifier technology, ORing device, output capacitor technology,
 - Thermal management technology, Heat removal…
Report Highlights
Ac-Dc External Power Supplies

• Advances are fueled by
 ► Demands for smaller, more efficient and reliable products, and
 ► Regulatory agencies worldwide
• Reduced power requirements in some consumer categories (Laptops, Displays), higher power in Tablets
• Significant R&D on smaller sizes (WBG devices enable higher fsw)
• Universal input voltage and Flyback/QR Flyback are common
• BOM and Component Count Reduction is facilitated by
 ► Primary side regulation (PSR), higher control and HVFET integration
• Continued downward trend in no-load power consumption
• New regulations DoE Level VI, CoC of Energy Efficiency (Jan ‘16) and EPS (Feb ’16) coming soon – significantly raise the efficiency bar
• Additional data captured in trend tables:
 ► Voltage/power ranges, density, architecture/topology, switch/rectifier/capacitor technologies, mounting/heat-removal/packaging technologies,..
Report Highlights
Isolated Dc-Dc Converters

• Major **transition** in demand dominance **from communication segment to computing segment**
 - Focus on efficiency and configurability
 - More voltage variations (including intermediate bus)
 - Increased digital interface

• **Increasing use of 1/8 and 1/16 brick for 100 W power**

• **Regulated or semi-regulated outputs dominate over unregulated**
 - Trend towards adaptable intermediate bus

• **Switching devices – trend away from Silicon predicted**

• **Additional data captured in trend tables:**
 - Form-factor, Output regulation, Efficiency, Topology
 - Power management Interface, Protection, Interface requirements
 - Input voltage range, output voltages and currents, switching frequency
 - Switch, capacitor and magnetics technologies
 - Mounting Technique and Substrate Material
Report Highlights
Non-Isolated Dc-Dc Converters

• Output voltages continue diving into Sub 1-volt region
 ▶ Tighter voltage set point windows
 ▶ Lower output voltage ripple
 ▶ Faster transient response, and
 ▶ Reduced noise generation

• Wide input range (flexibility) requirement conflicts with the need for high power density and high efficiency

• Digital control or interface increasingly expected
 ▶ Analog control with PMBus communication interface popular

• Perceived threat from PSiP or PwrSoC

• Additional data captured in trend tables:
 ▶ Number of outputs, current ratings
 ▶ Topologies, Switching devices, frequency, filter technology
 ▶ Power Management interface, control type and implementation
 ▶ Substrate type and packaging integration technologies
Report Highlights
Non-Isolated PSiP and PwrSOC

- PSiP defined as smaller than a 1” cube
- Faster rise in max current ratings (40 A available now)
 - 2013 max was 15 A with projection of 25 A in 2017
- More configurations becoming available
- Faster adoption of digital control than predicted (30%)

- Modular PwrSOC predicted to take low-end PSiP market
- Huge impact of granular PwrSOC on overall POL market

- Additional data captured in trend tables:
 - Voltage and current ranges, efficiency
 - Topologies, Switching devices, frequency, filter technology
 - Power Management interface, control type and implementation
 - Substrate type and packaging integration technologies
Components
Power Semiconductors

• Low and mid-voltage Silicon (20-200 V)
 ➤ Continued steady improvement in FOM for DC-DC and synchronous rectification applications

• Mid-voltage GaN (40-200 V)
 ➤ Dominated by enhancement-mode transistors
 ➤ Adoption rate is much slower than previous analyst and PSMA predictions
 ➤ Application focus more on high frequency (MHz) and wireless power transfer
 ➤ Manufacturing cost is becoming competitive with Silicon equivalent devices

• HV Silicon (600 V class)
 ➤ Superjunction devices becoming higher performance and increasingly application-specific
 ➤ Optimized for hard-switching unipolar
 ➤ Optimized for lowest loss in ZVS and resonant topologies
 ➤ Optimized for improved diode ruggedness in inverters with hard-switching
Components

High Voltage Wide Band Gap (600-1200 V)

- **600 V GaN cascode devices sampling** to alpha customers from multiple vendors
 - No standards in SMT packages yet
 - Cascode compatible with standard gate drivers
 - Reverse conduction via high performance body diode
 - Performance benefit primarily in bridge derived circuits, hard-switched and ZVT
 - Need for controller ICs to address this application space

- **450-650 V GaN enhancement-mode transistors available and sampling** from multiple vendors
 - Some traditional TO packages and some SMT packages, but nonstandard footprints
 - Gate drive for enhancement mode requires dedicated IC or more complex circuit
 - Reverse conduction characteristic higher Vf than cascode
 - Simpler monolithic device compared to cascode

- **600-1200 V SiC transistors**
 - Very few 600 V class devices released
 - Traditional TO packages
 - Excellent thermal conductivity
 - Excellent ruggedness
 - **1200 V - more device options and more module package options available**
 - Compatible with IGBT class gate drivers
Application Trends & Emerging Technologies: Structure

• Introduction
 ► A high-level introduction and an overview of the application segment/technology

• Market Drivers
 ► Identification of two to three key application areas that are having largest impact on the market and its implications to power electronics

• Key Metrics
 ► Identification of key power electronics metrics or specifications and how they are driving power electronics evolution for the segment/technology

• Trends
 ► Identification of end use trends or disruptive forces that impact the application segment or the core/support technology

• Challenges
 ► The biggest challenges for power electronics industry and its component suppliers in this applications segment/technology
Participate and Benefit

- All participants learned by doing
- Contact PSMA for future participation
- If you give and share, you gain more than you gave
- Participate in the survey to enrich the data
Summary/Takeaway

• Value of the PSMA Technology Roadmap depends on your perspective

Image Courtesy: Getty Images
Sincere Thanks To:

Segment Leads

Ac-Dc Front-End – Conor Quinn, Artesyn and Brian Zahnstecher, PowerRox

Ac-Dc External – John Wiggenhorn, MPS and Carl Blake, Transphorm

Dc-Dc Isolated - Stephen Oliver, Navitas; Ian Mazsa, Vicor and Ernie Parker, Crane

Dc-Dc Non-Isolated - Cahit Gezgin, IR/Infineon

PSiP and PwrSOC - Arnold Alderman, Anagenesis

Overall Co-ordination

Joe Herzopa, Judy Herzopa, Lisa Herzopa – PSMA

Laurie House

Survey - Brian Zahnstecher, PowerRox LLC

Retrospective Analysis - Syed Imam, ASU
Sincere Thanks To:

Applications Trends

Automotive – Rais Miftakhutdinov, TI
Computing – Richard Caubang, Artesyn
Consumer – Tim Kaske, ON Semiconductor
Industrial – Steve Oliver, Navitas
Lighting – Laurent Jenck, ERP
Medical – Peter Resca, Astrodyne
Military/Aerospace – Paul Schimel and Odile Ronat, IR/Infineon
Motor Control - Joe Roy, Fairchild
Portable Charging – Upal Sengupta, TI
Renewables – Raja Ayyanar, ASU
Co-ordination – Ajay Hari, ON Semiconductor
Sincere Thanks To:

Emerging Technologies

PwrSOC – Cian O’Mathuna, Tyndall National Institute

Server Power – Rick Fishbune, IBM

3D Power Packaging & Co-ordination – Brian Narveson, Narveson Innovative Consulting

Additive Manufacturing – Doug Hopkins, Haotao Ke, NC State

Magnetics, Smart Grid, Energy Storage, Smart Building – Ed Herbert

High Power Wireless Charging – John Miller, JN Miller PLC
Thank You